几何代数与GIS研究团队
  • 首页
  • 研究团队
  • 研究生培养
  • 论文项目
  • 进展
  • 联系我们
  • 资源
  • English
  • img

    几何代数与GIS研究团队

    虚拟地理环境教育部重点实验室(南京师范大学)

袁林旺,1973年生,博士,教授。南京师范大学副校长,虚拟地理环境教育部重点实验室主任。国家杰出青年基金获得者,入选教育部新世纪优秀人才计划、江苏省青蓝工程中青年学术带头人、江苏省高校优秀科技创新团队带头人;兼任中国测绘学会理事、中国地理学会学术工作委员会和科技评价工作委员会副主任、中国GIS协会就业指导工作委员会副主任、江苏省地理学会理事长、江苏省高等学校信息化研究会理事长。主要从事GIS理论与方法研究,主持国家自然科学基金委杰青和重点项目、科技部国家重点研发课题和863课题等国家级课题7项;在国内外期刊发表论文100余篇,出版专著3本,参编国家标准2项、授权国内外发明专利5件;获教育部自然科学一等奖、江苏省科学技术二等奖、国家地理信息科技进步一等奖、国家测绘科技进步一等奖、江苏省优秀教学成果一等奖等教学科研奖励7项,《Journal of Asia Geography》共同主编、《测绘学报》《资源科学》《南京师大学报(自然科学版)》编委。
了解更多

研究方向

数据模型

包括:地理时空与几何代数空间的映射模式,地理过程连续-离散一体化表达模式,场景数据模型,地理规律驱动的GIS数据结构与索引。

计算模型

包括:新型GIS计算框架;计算模型算子库;分析流程统一的结构化模板;脚本化模板开发方法;算法解析优化与并行化。

分析模型

包括:地理模型模式的自适应集成与改造;动态模型的GIS计算嵌入;结构化特征模型的GIS计算嵌入;连续地理模型GIS计算嵌入。

基于GA的GIS系统

包括:系统架构;计算算子库;计算引擎;系统功能与截图;典型分析案例(三维城市案例、南极海地冰案例、应急疏散案例等)。

最新进展

12月 2,2023 发表评论 72,004 views

俞肇元教授、罗文教授、李冬双副教授等参加首届全国信息地理学大会并作报告

2023年11月18-19日,由中国地理学会和苏州科技大学共同主办的“首届全国信息地理学大会暨中国地理学会信息地理专业委员会成立会议”在苏州召开。本次大会以“信息化时代的中国地理学”为主题,俞肇元教授、罗文教授、李冬双副教授、硕士生黄亚迪共同参加了大会。其中俞肇元教授作了“从二元空间到三元世界:信息地理学中空间与对象的重构”主题的报告,罗文教授作了“地理信息场景一体化表达与计算的范畴学方法”主题的报告,李冬双副教授作了”AI for Ocean Science”主题的报告。

 

12月 2,2023 发表评论 4,443 views

赵彬如副教授参加第6届 World Landslide Forum并作报告

2023年11月14-17日,赵彬如副教授参加了由International Consortium on Landslides在佛罗伦萨和意大利主办的第6届 World Landslide Forum,并在论坛作了”Assessing the potential of different satellite soil moisture products in landslide hazard assessment”的汇报。

12月 2,2023 发表评论 1,077 views

俞肇元教授、罗文教授、李冬双副教授等参加第二届国际数字孪生海洋峰会并作报告

2023年11月9-12日,俞肇元教授、罗文教授、李冬双副教授、博士生杜沛、王建在厦门参加了由联合国海洋十年计划项目组主办的第二届国际数字孪生海洋峰会,本次峰会围绕感知、模拟、可视等主题,会议中俞肇元教授作了”A Scenario-based Information Integration and Interaction Framework based on Large Language Model for Ocean Digital Twin System”的报告,罗文教授作了”Multi-dimensional and multi-level complex network model for expressing game relationships among stakeholders in coastal zones”报告,杜沛博士作了”The Construction Patterns of Data Management Framework for Digital Twin system in Coastal Region”的报告。

12月 2,2023 发表评论 1,028 views

赵彬如副教授参加中国测绘学会摄影测量与遥感专业委员会并作报告

2023年11月3-5日,由中国测绘学会摄影测量与遥感专业委员会、武汉大学遥感信息工程学院主办的摄影测量与遥感2023学术年会在上海举行,赵彬如副教授参加了会议并作了“顾及城市建筑精细结构的城市内涝模拟”主题的报告。

成果展示

传感器网络行为语义分析

结构层次网络分析

多要素融合场景构建

高维时空数据特征解析

最新发表

img

Irregular geographic spatio-temporal-field data have been rapidly accumulating; however, data organizations and operations for different irregular types are often segregated, leading to systematic drawbacks, such as interface expansion difficulty and high coupling codes in GIS implementations. The paper proposes a unified approach to organizing and operating irregular geographic spatio-temporal-field data. The proposed approach has two components, namely ‘concepts and definitions’, and ‘logical model’. The first component introduces the concept of primitive elements, which are formal sets of data points, to serve as the smallest building blocks in the data organization. We define the corresponding primitive elements for three prevalent irregularity types (including sparse, imbalanced, and heterogeneous). The second component utilizes object-oriented programming to support the implementation of various operators. Additionally, we develop the layered architecture to decouple data organization, operation, and visualization to assure low coupling among layers. For demonstrations, we conduct case studies to show the effectiveness of our approach. Additionally, we conduct experiments to new irregularity types and illustrate the flexibility and scalability of our approach. Comparisons with classic tensor methods and spatio-temporal analysis methods show that our approach has more comprehensive supports for different data types.

A tensor-based approach to unify organization and operation of data for irregular spatio-temporal fields Li et al. A tensor-based approach to unify organization and operation of data for irregular spatio-temporal fields.
img

At small granularity (e.g., 10-minutes to hourly), expressway traffic volumes rely heavily on drivers' driving habits heterogeneity and decision randomness, making it challenging for accurate modeling. In this paper, we propose a small granularity simulation model named Small-Granularity Expressway Traffic Volumes with Quantum Walks (SGETV-QW). The proposed model adopts quantum walks to generate probability patterns of the exiting time of drivers from the expressway. Then, we refine and map the generated probability patterns to empirical traffic-volume data via a stepwise regression and quantify the modeling accuracy in both the time and frequency domain. We validate SGETV-QW for traffic volume data from seven stations along the Nanjing-Changzhou Expressway in China and compare it with Autoregressive Integrated Moving Average Model (ARIMA) and Long and Short-Term Memory (LSTM) networks. The results show that SGETV-QW improves the simulation accuracy at small granularity. In addition, traffic volumes simulated by SGETV-QW have almost the same frequency spectrum as observed traffic volumes. Finally, we conduct a sensibility analysis and show that SGETV-QW can adapt its parameters to model traffic volumes at different granularities.

Modeling Small-Granularity Expressway Traffic Volumes With Quantum Walks Yu et al. Modeling Small-Granularity Expressway Traffic Volumes With Quantum Walks.
img

Lossy compression has been applied to the data compression of large-scale Earth system model data (ESMD) due to its advantages of a high compression ratio. However, few lossy compression methods consider both global and local multidimensional coupling correlations, which could lead to information loss in data approximation of lossy compression. Here, an adaptive lossy compression method, adaptive hierarchical geospatial field data representation (Adaptive-HGFDR), is developed based on the foundation of a stream compression method for geospatial data called blocked hierarchical geospatial field data representation (Blocked-HGFDR). In addition, the original Blocked-HGFDR method is also improved from the following perspectives. Firstly, the original data are divided into a series of data blocks of a more balanced size to reduce the effect of the dimensional unbalance of ESMD. Following this, based on the mathematical relationship between the compression parameter and compression error in Blocked-HGFDR, the control mechanism is developed to determine the optimal compression parameter for the given compression error. By assigning each data block an independent compression parameter, Adaptive-HGFDR can capture the local variation of multidimensional coupling correlations to improve the approximation accuracy. Experiments are carried out based on the Community Earth System Model (CESM) data. The results show that our method has higher compression ratio and more uniform error distributions compared with ZFP and Blocked-HGFDR. For the compression results among 22 climate variables, Adaptive-HGFDR can achieve good compression performances for most flux variables with significant spatiotemporal heterogeneity and fast changing rate. This study provides a new potential method for the lossy compression of the large-scale Earth system model data.

Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0) Yu et al. Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0).
img

Due to the increasing complexity of GIS data and service modes, there is an urgent need for the next generation of GIS with new representation and computation methods. A number of spatiotemporal models, analytical and visualization methods, as well as system architectures have been proposed. However, previous studies failed to integrate basic geographical theories with latest computing technologies. Without a well-defined body of underlying theories, new models and methods are limited in scope and not able to meet the ultimate requirements of the next-generation GIS, which demands multidimensional, highly dynamic and semantic-rich representations and computational power. Geometric algebra (GA) provides an ideal tool for the expression and calculation of multidimensional geometric objects, and has proved to be effective for GIS representation and computation applications in our previous studies. We propose to use GA as the basic mathematical language for the establishment of the next-generation GIS. We present the framework of a GA-based next-generation GIS and describe the representation space, data structure, and computational models in this paper. A few issues that have not been sufficiently addressed by previous studies are discussed in detail with potential solutions proposed. These include multi-scale representations, modelling of geographic processes, simulation of geographic interactions, and multi-element modelling. The GA-based next-generation GIS uses an integrated structure consisting of a theoretical architecture, model for information expression, and computational methods. Implementation of the approach aims to improve GIS capacities in applications such as global spatiotemporal modelling and analysis, regional geographic modelling and simulation, smart city applications, and many others.

Towards the next-generation GIS: a geometric algebra approach Yuan et al. Towards the next-generation GIS: a geometric algebra approach.

功能

  • 登录
  • 文章RSS
  • 评论RSS
  • WordPress.org

分类目录

前沿 (5) 未分类 (3) 进展 (46)

浏览数

  • 几何代数资源 - 100,741 Views
  • 俞肇元教授在滁州学院作“高速公路交通流的量子模拟模型研究”报告 - 80,726 Views
  • 俞肇元教授、罗文教授、李冬双副教授等参加首届全国信息地理学大会并作报告 - 72,004 Views
  • 袁林旺教授参加第八届全国地理信息科学博士生学术论坛并作大会主题报告 - 51,024 Views
  • 俞肇元副教授参加地理学大会并作分会场报告 - 28,864 Views
Copyright © 2018 Geometric Algebra and GIS Research Team. 苏ICP备17047450号-1